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Diffraction of non-relativistic electron waves by a cylindrical 
capacitor 

F Gesztesyt and L Pittner 
Institut fur Theoretische Physik, Universitat Graz, Universitatsplatz 5 ,  A8010 Graz, 
Austria 

Received 13 June 1978, in final form 18 October 1978 

Abstract. The diffraction of non-relativistic electron waves by a cylindrical capacitor is 
considered for an electric voltage at the capacitor small compared with the energy of the 
incident electrons. On the basis of the exact general solution of the Schrodinger equation for 
an electron in an attractive logarithmic potential, asymptotic solutions inside the capacitor 
which are similar to JWKB-type solutions, but with a significant modification, are derived. 
Application of appropriate boundary conditions to our asymptotic solutions yields an 
angular momentum expansion of the scattered wave which is further evaluated by means of 
the Sommerfeld-Watson transformation. The change of various well known diffraction 
phenomena with increasing electric voltage at the capacitor is calculated explicitly and 
discussed in detail; in particular, the convergence of electron interference fringes towards 
the optical axis is one of the main results of our investigation. 

1. Introduction 

In highly specialised electron optics laboratories, electron interference experiments 
offer the possibility of a simple demonstration of the wave behaviour of electrons which 
does not require any assumptions about the interactions between electrons and atoms 
and the distribution of atoms in crystalline lattices, as is necessary for the analysis of 
electron diffraction experiments in crystalline materials. 

An electrostatic convergent biprisma, which enables one to observe electron 
interference phenomena, may be constructed from a capacitor consisting of a hollow 
cylinder and a central straight wire (Mollenstedt and Diiker 1956, Donati et a1 1973, 
Merli et a1 1976). The electrostatic potential inside the cylinder is of logarithmic type, 

V(r )  = E ln(r /b)  a s r s b  E > O ,  (1.1) 

where a and b denote the radii of the wire and hollow cylinder respectively. This 
electric field attracts incident electrons towards the central wire; consequently the 
Fresnel zones due to diffraction by the wire converge towards the optical axis so that a 
large number of these zones can be observed with increasing electric field strength. 

These interference phenomena can be calculated via an evaluation of the well 
established diffraction integral (Sommerfeld 1964, Glaser 1952, Glaser and Schiske 
1953, Komrska 1971). The electron wavefunction at any observation point is derived 
from its experimentally prescribed boundary values on the diffraction plane (the plane 
perpendicular to the direction of the incident electrons and containing the axis of the 
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central wire) by means of the Green function belonging to this plane. The boundary 
values of the wavefunction are obtained from an appropriate solution of the 
Schrodinger equation for an electron in the electrostatic field defined above by 
multiplication with the so called transmission function of the wire, which equals zero 
inside and one outside the wire, because the wire is considered as an impenetrable 
obstacle. The required solution of the Schrodinger equation is obtained using the 
quasiclassical approximation method (Olver 1974). In the case under consideration the 
diffraction integral can be simplified to an extent which allows the explanation of 
various significant properties of the interference pattern (Komrska 197 1). The 
geometrical shape of the central wire, i.e. its circular section, is not taken into account in 
this calculation, nor is the incident electron wave decomposed into partial waves in 
order to study the influence of the electrostatic field on geometrically reflected waves 
and creeping modes. 

Here we start with the rigorous general solution of the Schrodinger equation for an 
electron in the logarithmic potential defined above, which may be expanded into partial 
waves in the usual manner; each partial wave can be represented by a uniformly 
convergent perturbation expansion (Gesztesy and Pittner 1978). If the electrostatic 
field inside the capacitor is sufficiently weak, dominant terms of this expansion can be 
summed up to Bessel-type functions. These approximations, which are similar to 
JWKB solutions (but with a significant modification), satisfy the Schrodinger equation 
asymptotically in the domain a s r s b, and their asymptotic behaviour for r + 0 is just 
the expected one (Gesztesy and Pittner 1978, Olver 1974). 

Inserting appropriate boundary conditions, which describe an impenetrable cylin- 
drical wire of radius a, V ( a  - 0) = a, and freely propagating electrons outside the 
hollow cylinder of radius b, one obtains the partial-wave expansion of the scattered 
wave, which differs significantly from the corresponding result for scattering off an 
impenetrable cylinder alone without an electrostatic field (Keller et a1 1956, Franz 
1957, Levy and Keller 1959). 

As usual in high-frequency scattering, in analogy to the field-free case ( E  = 0), the 
Sommerfeld-Watson transformation may be applied, but the usual shifting of integra- 
tion paths brings about two additional contributions to the scattered wave which arise 
from cuts in the complex angular momentum plane. These discontinuities can be 
estimated to be small compared with the main part of the scattered wave, which in turn 
may be obtained approximately from the corresponding expression in the field-free 
case by an analytic continuation in the scattering angle 4, 

where E denotes the energy of the incident electrons. 
The decomposition of electron waves into eigenfunctions of angular momentum 

enables one to explain the influence of the logarithmic potential on each single partial 
wave, on geometrically reflected waves, on passing waves, and especially on the 
creeping modes. 

The changes of various well known diffraction phenomena in the deep shadow 
region, the lit region, the Fraunhofer region, and especially the convergence of Fresnel 
zones to the optical axis with increasing electric field strength, are calculated explicitly 
and discussed in detail. As a result, the Fresnel zones reach this axis approximately at 
the point where the classical trajectory of an electron with angular momentum 
I = a(2mE)”’ crosses the axis (see figure 1). 
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Energy r sin+ o It If 

Figure 1. Solid lines, logarithmic potential V ( r ) ,  cut off at r = b, and impenetrable wall at 
r = a ; broken lines, classical trajectory of an electron with energy E and angular momentum 
I = a ( 2 m ~ ) " ~ .  

2. General solution 

Under suitable boundary conditions, the Schrodinger equation with the logarithmic 
potential defined in the introduction, 

( - A / ( 2 m ) +  V(r ) - -E)q ( r ,  4 ) = 0  a s r s b  OS4==27r, (2 .1 )  

q ( r ,  4 )  = r-"'g[(r) exp(ki l4)  1 = 0 , 1 , 2  ) . . . ,  ( 2 . 2 )  

[ -d2/dr2+(12- 1 / 4 ) r - 2 + 2 m V ( r ) - 2 m E ] g l ( r )  = 0 

can be solved uniquely (Gesztesy and Pittner 1978).  By separation of variables, 

one obtains the radial equations 

(2 .3 )  
which may be transformed via 

g d r )  = eX"y,(x) x = ln ( r /b )  - E / E  

to the linear differential equations 
(2 .4 )  

(d2/dxZ - l 2  - px e2")yr(x) = 0 p = 2mb2e eZE", (2 .5 )  

the general solutions of which are entire functions of x. 
The infinite series 

with the polynomials PE,' defined by the recursion scheme 

[ 4 n ( n  * 1 ) + 2 ( 2 n  * / )  d/dx+d2/dx2]p',f:(x)=Xp~~1,1(x), 

n = 1 , 2 , 3 ,  . . , (2 .7 )  
Pbi:(X) = 1 1 = 0, 1 , 2 ,  , . . 

converge uniformly on each compact subset of the complex plane, and uniformly on the 
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negative real line; they solve the differential equations ( 2 . 5 ) ,  and obviously have the 
limits (Gesztesy and Pittner 1978). 

lim y j " ( x )  erix = 1 1 = 0 , 1 , 2  ,.... (2.8) 
x+-m 

3. Approximation by Bessel functions 

For our further calculations we shall try to single out the dominant terms from these 
expansions (for each I = 0, 1 , 2 ,  . . .), such that physically relevant boundary conditions 
can most easily be imposed on the resulting approximations to the exact solutions (2.6).  
For the moment, we restrict our investigation to the solutions y?). The polynomials 
read explicitly 

The coefficient estimate (Gesztesy and Pittner 1978) 

enables one to majorise the expansions X:=opn eZnxp(nt: ( x )  by the series 

(3 .3)  

the terms of which (rather their absolute values) decrease exponentially for n > N 9 
b(mE)'/* in the interval In ( a / b ) s x + E / E s O ,  if the condition Eb<< (E/m)"2 is 
assumed to be valid. Then N<< E / €  s 1x1, which in turn implies dominance of the 
highest powers C?)X" of the polynomials p c j ( x ) .  These dominant terms may be 
summed up easily to the asymptotic solutions 

1 / 2  x y j " ( x )  = Ixl-'/2JI(() 5 = ( d x I )  e 
X + -CO, 1 = 0 , 1 , 2 ,  . . .  (3 .4)  

where JI denote Bessel functions (Abramowitz and Stegun 1972); note here that the 
restriction a s r 6 b implies the variable x to be located near - 00 in the sense of the 
asymptotic approximation. 

Conversely, for € / E  << 1 ,  by careful investigation one can show that the functions on 
the right-hand side of (3 .4)  solve the differential equations ( 2 . 5 )  asymptotically for 
x + -CO, and the asymptotic behaviour (for x + -CO) of the solutions (3 .4)  also agrees 
with the limit relation (2 .8) .  

The experimental values of E and E are of the order of 104eV and a few eV 
respectively (Mollenstedt and Duker 1956, Donati et a1 1973, Merli er a1 1976); thus 
we may assume E / E  << 1 .  

An analogous treatment of the solutions y'l-l-via an analytic continuation of 1 to 
non-integer values to avoid the singularity at n = 1 during the polynomial recursion, 
replacing the Bessel functions J - /  by Hankel functions Hi", and then returning to 
integer values of I-finally leads to the general asymptotic solutions 

Y / ( x )  ~ c / I x I - ' / ~ J / ( ( )  +d/1x1'/2H11)(() x + - o 0 , 1 = 0 , 1 , 2 , .  . . (3.5) 
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with arbitrary complex constants cI and dl to be determined by suitable boundary 
conditions. 

In terms of cylinder coordinates r and 4, the general asymptotic solution of the 
Schrodinger equation (2 .1 )  reads 

m 

*(r ,  4 )  = C cos ( l4 ) [ c , (k ( r ) ) -%(k( r ) r )  + d , ( k ( r ) ) ' W  (k ( r ) r ) l  

k ( r )  = [ 2 m ( E  - V(r ) ) ]1 '2  a s r s b ,  O S 4 C 2 7 r .  

1 =o 
(3 .6 )  

This asymptotic solution differs from the exact solution of the free Schrodinger 
equation in cylinder coordinates by the radial dependence of the momentum k ( r )  and 
the factors (k(r))*'  in front of the cylinder functions. 

4. Boundary conditions 

To impose appropriate boundary conditions on the general solution (3 .6) ,  we introduce 
the incident electron wave 

and the scattered electron wave 

m 

x(r ,  4 )  = i'SIHjl) ( p )  cos(l4) - r-"' e"A(4) 
1 =o r + m  

with the scattering amplitude 

~ ( 4 )  = ( 2 / 7 r ) 1 / 2 ( 2 m ~ ) - 1 / 4  e-1~14 f s1 cos(i4) 
1 =o 

which determine the total cross section 

(4 .4 )  

The boundary conditions for scattering off an impenetrable cylindrical wire of radius 
a under the influence of an electrostatic field inside the hollow cylinder of radius b then 
read 

a 
ar *(a,  4 )  = 0 ( * - @ - x ) ( b ,  4 ) = 0  - ( * - @ - x ) ( r ,  4 ) / , = b  =o. (4 .5 )  

By straightforward insertion of the general solution (3 .6)  these conditions yield rather 
complicated expressions for the scattering coefficients SI,  but for € / E  <c 1 these expres- 
sions can be approximated by the simple ratios 

so= -J0(LY)/Hb1)(a) s1 = - 2 v % ( a ) / H I ' ) ( a )  1 = 1 , 2 , 3 ,  . . . 
(4 .6)  a = a [ 2 m ( ~  - v ( a ) ) ] ' / *  v = E / ( E  - V ( U ) ) .  
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Therefore the scattered electron wave 

differs from the corresponding expression in the absence of an electrostatic field ( E  = 0) 
by the argument a = & ( a )  of the cylinder functions (where the radial-dependent 
momentum k ( r )  is taken on the surface of the charged wire ( r  = a ) )  and by the factors v’. 
Although 1 - v << 1 for € / E  << 1, our following investigations will show that these factors 
Y‘ play an important role in the explicit calculation of the scattered wave (4.7), because 
the summation over partial waves must be performed at least up to values of the angular 
momentum 1 which are somewhat larger than a. 

5. Integral representation of the scattered wave 

Here we perform the usual analytic continuation in the angular momentum 1 in order to 
obtain an integral representation of the wavefunction of the outgoing electrons. This 
method enables one to calculate explicitly the series (4.7) in the case of high-frequency 
scattering. It brings about two discontinuities due to the factors v’ in the partial-wave 
expansion (4.7). We write this expansion as a contour integral in the complex angular 
momentum plane and then shift the path of integration appropriately. 

For this purpose we start with the notations 
m 

&(r, 4 )  = J 0 ( p ) + 2  c v’i%(p) cos(@) 
1 = 1  

and 

w, 4) = &(r, 4 )  + x k  4 )  r a b ,  O ~ ~ S T  (5 .2)  

~ ( r , 4 ) = C D ( r , 4 ) + x ( r , ~ ) = ~ ( r , 4 ) + C D ( r , ~ ) - & ( r , 4 ) .  (5.3) 

such that the wavefunction of the outgoing electrons reads 

At first we concentrate on the evaluation of 3; the difference CD - & will be considered 
later. 

The well known Sommerfeld-Watson transformation, based on the residues 

(1/2~ri)  f dA/sin ( T A )  
(around I )  

1 integer, 
1 

then leads to the integral representation 

(5.4) 
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with the integrand 

h * ( p )  = (H?) ( p ) H Y ’ ( a )  4) (p)H:2’ (a))/H‘:’ ( a ) ,  (5.6) 

A complex, where the real axis is denoted by R. 
These manipulations can be performed because the Hankel functions H!”*” depend 

holomorphically on their order A ,  and the zeros of Hi1) ( a )  with respect to A are 
non-real (see figure 2). The zeros of the Hankel functions H:””, as functions of their 
order A ,  and their asymptotic behaviour for /AI+m have been investigated in detail 
(Keller er a1 1963, Cochran 1965, Nussenzveig 1965). The path of integration can be 
shifted from T to R due to well known relations between Hankel functions (Abramow- 
itz and Stegun 1972). 

Using the above-mentioned asymptotic behaviour of Hankel functions, with the 
restriction 0 < 4 < +T, we may close the path of integration R along the half-circle 
A = / A  leiY, 0 s y s T, with IA 1 + 00, thus including all the zeros of H!? ( a )  and the cut of 
vIA’  along the positive imaginary axis I+, and obtain the integral representation 

+(r, 4) = *1(r, 4) + q c u t ( r ,  4) 

Figure 2. Paths of integration in the complex angular momentum plane; the zeros of 
HY)  ((U) and H t i  ( p )  lie on the curves N, and M, respectively, i = 1 , 2 ;  the first zero of 
Hyi(cr)  is denoted by A l .  
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where the closed path H includes the zeros of H y )  ((U) in the upper half-plane (see figure 

Before calculating explicitly the loop integral q1, we now derive an approximation 
2 ) .  

to the cut contribution Fc,,, which may be written as 
+m er7 /2  

4) = -1 d r  e,, - e-mT (e'T + e-'T )h iT(p)  sin(r In v). (5 .8 )  

Since only the section 0 d T << (U essentially contributes to this integral, the asymptotic 
representation of Hankel functions of large arguments may be used, 

0 

y i e 1 ding 

(5.10) 

with the abbreviation S = /In V I .  
The second discontinuity arises from the function 6 defined by (5.1). We 

decompose 

&, 4) = exp[ip - i ~ ) I + @ ~ ~ ~ ( r ,  4) (5.11) 

by means of the Sommerfeld-Watson transformation. Due to the asymptotic 
behaviour of the integrand as Ih I + co for 0 < 4 < T, the path of integration can be 
shifted to the imaginary axis, 

+cc e T ( r / 2 - 4 )  

erT - ePrT J i T ( p )  sin(.rS). ( 5 . 1 2 )  

By means of the asymptotic representation of Bessel functions of large arguments, in a 
similar manner to that above, one obtains the approximation 

@'cut(r, 4) = 2 dT 

6. Residue series 

(5.13) 

Here we are going to evaluate explicitly the loop integral by means of the residue 
theorem. The zeros of Hankel functions with respect to their order are of first order. 
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Therefore we may expand 

(6.1) 

with the sequence {A,; n = 1 , 2 , 3 , .  . .} of zeros of Hi1) (CY) in the upper half-plane (see 
figure 2)  (Keller eta1 1963, Cochran 1965). Insertion of the asymptotic behaviour of the 
Hankel functions H‘:”’ as IA 1 + 00 enables one to prove the convergence of this residue 
series for OS 4 < &T. 

This expansion is of practical use only if the first few terms dominate. Using the 
asymptotic representation of H:“” ( a )  by Airy functions, and the Debye asymptotic 
expansion of Hi:) ( p ) ,  in a manner similar to the field-free case ( E  = 0; compare with the 
case of an impenetrable sphere (Nussenzveig 1965)), we get Q1 = *r)+V\-): 

R, =Hit )  (a)(aH:’) (&)/ah / *=A,) -  1 

xexp [i(p’-a’)’~’] 1 (Ai‘( -e,))-’ exp[(ia + $ ~ , ( & a ) ’ / ~  
n = 1.2.3, ... 
{n small) 

- c , $ J ~ ( $ ~ ) ’ / ~ ) ( * # J  + (T +is)]  + higher residue terms (6.2) 

with the geometrical shadow boundary (T = sin-’(a/p) = a / p ,  p -CY >> CY ‘I3 >> 1,  and the 
negative zeros c, of Airy functions, Ai(-c,) = 0, n = 1 , 2 , 3 ,  . . .; obviously @-) 

dominates over for 4 >> 
Thus we recognise that the residue series (6.2) is rapidly decreasing if (T - 4  + 

8 / 4 3  >>  CY-^'^. In this region of the scattering angle 4, which in the field-free case ( E  = 0, 
S = 0) is called the deep shadow region, only the first few surface waves (creeping 
modes; Franz 1957) associated with the first few zeros A,, n = 1 , 2 ,  3 , .  . . , contribute 
significantly. With increasing electric field strength, i.e. increasing S, these creeping 
modes suffer some loss of intensity described by the factor vLI due to the expansion 
(6.2), but on the other hand the difference @-a in the decomposition (5.3) of *then 
tends towards @ and therefore 9 tends towards Vi-)+@. The physical meaning of this 
formal result lies in the fact that with increasing electric field strength incident electrons 
with angular momentum 1 > a are deflected into the region U - 4 + S/ J3 >> a-”3, thus 
confining the deep shadow region. 

7. Lit region 

Here we try to evaluate explicitly the integral representation (5.7) of the wavefunction 
by the method of steepest descent. -1/3 in the region U - 4 + 8 / 4 3  4 a 

For this purpose we decompose (Franz 1957) 

cos (A4)=eiWA cos ( h + ) - i  eiA”sin ( T A )  *=T-4 .  (7.1) 

Then for 4 + (T + S/ J3 >> a-1/3, the first term is of negligible order, as may be seen from 
its contribution to the residue series; thus we are left with 
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Now the path H may be shifted to another path H’ consisting of three parts HI, 
i = 1 , 2 , 3  (see figure 2). Since Hi2) ( p )  -* 0 exponentially as IA 1 + 0;) along H i  or H:, we 
get 

(7.3) 

because the path H’ does not include any singularity of the integrand. Therefore 

pl(r, 4 )  = -f &-jA eiA(r/2-4) H‘,” ( p ) g ( A ) v ^  (7.4) 
H’ 

g ( A ) = H ~ ” ( a ) / H ~ ” ( a ) - * - l  as \ A  1 + 0;) along Hi .  

We denote 

pl, i(r,  4 )  = -1 $dA eiA(r’2-4) H?) ( p ) g  (A )v^ i = 1 ,2 ,3 .  (7.5) 

Along H$ we may use the Debye asymptotic expansion of H‘,” ( p ) ,  which leads to 

H: 

& ( A )  = A(?r/2 - + i s )  + ( p z  - A 2 ) l / ’  - A  cos-’(A/p) -hr, 
and by the method of steepest descent we obtain 

pl,3(r, 4 )  = exp[ip cos(4 -is)]. 

(7.6) 

(7.7) 

Along H i  all three Hankel functions may be approximated asymptotically by their 
Debye expansions, leading to 

E1(A) = A  ( ~ / 2  - 4 + i s )  + ( p 2 - A 2 ) 1 / 2  - 2(a2 -A2)1’2 

-A cos- ’ (A/p)  +2Acos-’(A/a)+$.rr, (7.8) 

and again by the method of steepest descent, for a << p, we get the result 

(7.9) 

The contribution from H i  is small because this path passes through the zero hl of 
Hi2’(a) (see figure 2). Thus the wavefunction of outgoing electrons, neglecting the 
discontinuities (5.10) and (5.13), 

W r ,  4 ) = W 3  4)+p1,1(r, 4 )  (7.10) 

represents freely passing electrons and geometrically reflected electrons respectively. 
The contribution from the first term in the decomposition (7.1) to the residue series 

for represents the continuation to the lit region of the surface waves which we have 
described in the preceding section. 
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8. Fresnel pattern 

We are interested mainly in the Fresnel pattern which arises in the region a << p << a4/3  
near the shadow boundary, i.e. 14 -(rid a-1”. Here such that 
we may start with expression (7.4). But the corresponding two saddle points on the 
paths H i  and H i  both tend towards a as 4+(r and S+O, such that the Debye 
asymptotic expansions of HY’”(a) fail to yield any reasonable result. In this case we 
decompose 

+(r +6/J3 

91 = qf’+ Pi*) + Yi3’ 

iA(v /Z-+)  A q ( 3 )  1 (r,  4) = e v H y ’ ( p )  = dA A3(A) eiE3(‘). 

Since the main contribution to Yi3) stems from the neighbourhood of a, 

Vi3)(r, 4 )  =A3( t )  eiE3(‘) ID, dA exp[$E;’(t)(A - t ) 2 ]  

along 

Dj={A = t + ~ 7 7  1/z(pZ-f2)”4; 7 3 To} 

To  =p(a-4  +i~).rr-’/Z(p2-tZ)-’’4 t = p sin(q5 -is) ,  

(8.2) 

where again the method of steepest descent from the saddle point t has been used. 
Hence we obtain 

(8.3) Y i3)(r, 4) = 2-’/’ exp[ip cos(4 - ~s)](F(+w) - F ( T ~ ) )  

with the Fresnel integral (Abramowitz and Stegun 1972) 

(8.4) 

For 14 -cr\ a a-1”, we have / T ~ (  >> 1, such that we may employ the approximation 

( 8 . 5 )  
i 

.rrTo 
F(+w) - F ( T ~ )  = - exp($.rrT$), 

which leads to the result 

U$%, 4) = (2.rrp>-’/’(a - 4 + i6l-l exp[i.rr/4 + ip cos 4 - as ++ip((4 - (rT- ~’11, 
(8.6) 

exhibiting some loss of intensity due to the factor v m ,  and some shift of the Fresnel 
pattern towards the axis to be discussed below. 

9 i 3 ) ( r ,  q5) = 2-l” e-i*’4 exp[ip cos(4 -i6)][2-’/’ eia14- (p/ ,rr) ’ / ’ ( (r  - q5 +is)]; 

for 4 = (+ and 6 = 0, Wi3) represents just one half of the incident electron wave. 

For 1, on the geometrical shadow boundary, F(rO) = T~ and therefore 

(8.7) 
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The contributions from q?) and Yi2) are only corrections of order O[a ‘13(4 -a)] 
(Rubinow and Wu 1956). Since the discontinuities (5.10) and (5.13) are negligible in 
the region defined above, especially lQCut(r, 4)1<< S for p << a4l3 and C#I =o, the wave- 
function of outgoing electrons in the Fresnel region consists mainly of three terms, 

~ ( r ,  4) = exp(ip cos 4) - exp[ip cos(4 -is)]  + Wi3) ( r ,  4). (8.8) 

Expression (8.3) provides the well known diffraction maxima, i.e. maxima of 
lV(r, 4)l; the distance on the screen between two consecutive maxima is approximately 
equal to ( p [ 2 m ( ~  - ~ ( u ) ) ] } ” ~ .  

With increasing electric field strength the Fresnel zones converge to the optical axis 
which is reached as soon as a l p  = 6 or, equivalently, 

a / r  = ( € / E )  In ( b l a ) .  (8.9) 

More precisely, the ‘centre’ of the Fresnel pattern, in the field-free case defined by the 
geometrical shadow boundary, 4centre = a / r  for E = 0, tends towards the axis according 
to the law 

dcentre U -  S2/c+ a = a / r  S = ( € / E )  ln(b/a), (8.10) 

as can be deduced easily from the result (8.3) and its approximation (8.6). Condition 
(8.9) relates values of € / E  and a / r  such that the classical trajectory of an incident 
electron with kinetic energy E and angular momentum 1 = a(2mE)l l2  approximately 
crosses the axis. 

For sufficiently strong electric fields the second term of approximation (8.8) vanishes 
such that the first term dominates, representing the deflection of incident electrons with 
angular momentum I > a towards the axis. 

9. Fraunhofer region 

In the region a4I3 d p << a , 4 6 a, where the condition 4 + a + 8 /43  >> a-1/3 is violated, 
we start with the integral representation (5.7) and insert the Poisson summation 
formula 

2 

which converges uniformly in the upper half-plane. By means of the residue series 
along the zeros of Hi1) ( a )  we find that only the first term (n = 0) of the series (9.1) 
essentially contributes to ql, such that 

Insertion of the Debye asymptotic expansion of Hi1) ( p )  and partial integration then 
yields 

(9.3) q r ) ( r ,  4 ) - ( 2 . n p ) - 1 / 2 ( a + 4  +is)-’ exp[i(?r/4+p +a4)-a~1. 
In the lit region 4 >> the term q?) is dominated by 

9i-k +)-exp[ip cos(4 - i 8 ) I + ~ l , l ( r ,  41, (9.4) 
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as evaluated in 5 7, such that the differential cross section becomes 
1 IA(4)l2 =la lsin $(4 - iS)l exp(-2a6 cos $4). 

Near the geometrical shadow boundary, for 14 - ~ l > a - ~ ” ,  we have 

q l ( r ,  4) = (2.rrp)-’” exp[i(.rr/4+p) -as ]  

xl(cr-4 +is)-’ e x p { ~ p [ ( ( + - ~ ) ’ - ~ ’ ] ) + ( ( + + ~  +is)-’ exp(ia4)], 
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(9.5) 

similar to our result (8.6) in the Fresnel region. 
In the Fraunhofer region p >>a’, for 14 -(+I &a-”’, we finally obtain 

q l ( r ,  4) = ($.rrp)-’/’ exp[ i (3~/4  + p )  - as]  sin(a4)/4, (9.7) 

exhibiting the familiar diffraction peak in the forward direction. 

10. Conclusion 

Apart from suitable asymptotic approximation methods, our calculations are based on 
two simplifications of the actual situation in the electron interference experiments 
quoted in the introduction. Firstly, the electrostatic biprisma was represented by a 
capacitor consisting of a central wire and a hollow cylinder. Secondly, we represent the 
incident electrons by a plane wave, whereas in the experiments (Mollenstedt and Duker 
1956, Donati et a1 1973, Merli et a1 1976) the electrons are emitted from a linear 
source. If, however, this last simplification were not made, one would have to resort to 
purely numerical methods. 

In this context we should note that reducing the distance between the linear source 
and the biprisma, with fixed distance between biprisma and screen, enlarges the 
distances between the Fresnel zones, thus facilitating their experimental observation. 

Nevertheless the problem of diffraction of an electron wave by a cylindrical 
capacitor has in principle been solved here; in particular, the convergence of Fresnel 
fringes to the optical axis is described by the simple laws (8.9) and (8.10), which follow 
from our rigorous solution of the Schrodinger equation (Gesztesy and Pittner 1978). 
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